3.1058 \(\int \frac {(a+i a \tan (e+f x))^m}{(c-i c \tan (e+f x))^4} \, dx\)

Optimal. Leaf size=52 \[ -\frac {i (a+i a \tan (e+f x))^m \, _2F_1\left (5,m;m+1;\frac {1}{2} (i \tan (e+f x)+1)\right )}{32 c^4 f m} \]

[Out]

-1/32*I*hypergeom([5, m],[1+m],1/2+1/2*I*tan(f*x+e))*(a+I*a*tan(f*x+e))^m/c^4/f/m

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {3522, 3487, 68} \[ -\frac {i (a+i a \tan (e+f x))^m \, _2F_1\left (5,m;m+1;\frac {1}{2} (i \tan (e+f x)+1)\right )}{32 c^4 f m} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^m/(c - I*c*Tan[e + f*x])^4,x]

[Out]

((-I/32)*Hypergeometric2F1[5, m, 1 + m, (1 + I*Tan[e + f*x])/2]*(a + I*a*Tan[e + f*x])^m)/(c^4*f*m)

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 3487

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(a^(m - 2)*b
*f), Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x
] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]

Rule 3522

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Sec[e + f*x]^(2*m)*(c + d*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0] && IntegerQ[m] &&  !(IGtQ[n, 0] && (LtQ[m, 0] || GtQ[m, n]))

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (e+f x))^m}{(c-i c \tan (e+f x))^4} \, dx &=\frac {\int \cos ^8(e+f x) (a+i a \tan (e+f x))^{4+m} \, dx}{a^4 c^4}\\ &=-\frac {\left (i a^5\right ) \operatorname {Subst}\left (\int \frac {(a+x)^{-1+m}}{(a-x)^5} \, dx,x,i a \tan (e+f x)\right )}{c^4 f}\\ &=-\frac {i \, _2F_1\left (5,m;1+m;\frac {1}{2} (1+i \tan (e+f x))\right ) (a+i a \tan (e+f x))^m}{32 c^4 f m}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 180.01, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(a + I*a*Tan[e + f*x])^m/(c - I*c*Tan[e + f*x])^4,x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\left (\frac {2 \, a e^{\left (2 i \, f x + 2 i \, e\right )}}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}\right )^{m} {\left (e^{\left (8 i \, f x + 8 i \, e\right )} + 4 \, e^{\left (6 i \, f x + 6 i \, e\right )} + 6 \, e^{\left (4 i \, f x + 4 i \, e\right )} + 4 \, e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}}{16 \, c^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^m/(c-I*c*tan(f*x+e))^4,x, algorithm="fricas")

[Out]

integral(1/16*(2*a*e^(2*I*f*x + 2*I*e)/(e^(2*I*f*x + 2*I*e) + 1))^m*(e^(8*I*f*x + 8*I*e) + 4*e^(6*I*f*x + 6*I*
e) + 6*e^(4*I*f*x + 4*I*e) + 4*e^(2*I*f*x + 2*I*e) + 1)/c^4, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^m/(c-I*c*tan(f*x+e))^4,x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^m/(-I*c*tan(f*x + e) + c)^4, x)

________________________________________________________________________________________

maple [F]  time = 1.68, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +i a \tan \left (f x +e \right )\right )^{m}}{\left (c -i c \tan \left (f x +e \right )\right )^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^m/(c-I*c*tan(f*x+e))^4,x)

[Out]

int((a+I*a*tan(f*x+e))^m/(c-I*c*tan(f*x+e))^4,x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^m/(c-I*c*tan(f*x+e))^4,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^m}{{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)^m/(c - c*tan(e + f*x)*1i)^4,x)

[Out]

int((a + a*tan(e + f*x)*1i)^m/(c - c*tan(e + f*x)*1i)^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\left (i a \tan {\left (e + f x \right )} + a\right )^{m}}{\tan ^{4}{\left (e + f x \right )} + 4 i \tan ^{3}{\left (e + f x \right )} - 6 \tan ^{2}{\left (e + f x \right )} - 4 i \tan {\left (e + f x \right )} + 1}\, dx}{c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**m/(c-I*c*tan(f*x+e))**4,x)

[Out]

Integral((I*a*tan(e + f*x) + a)**m/(tan(e + f*x)**4 + 4*I*tan(e + f*x)**3 - 6*tan(e + f*x)**2 - 4*I*tan(e + f*
x) + 1), x)/c**4

________________________________________________________________________________________